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DrivingSphere: Building a High-fidelity 4D World for Closed-loop Simulation

Supplementary Material

6. Implement details818

In this section, we provide detailed implementation settings819
to facilitate the reproducibility of this work. Specifically,820
we elaborate on the datasets used, evaluation metrics, the821
architecture of our generation models.822

6.1. Datasets823

Scene Generation. Our experiments are primarily based824
on the nuScenes [3] dataset. For the scene generation task,825
we use the nuScenes-OpenOcc dataset as the data source.826
Each scene provides complete occupancy annotations and827
BEV maps, supporting the evaluation of both static and dy-828
namic elements. We also use GPT4-V to obtain the scene829
description as the text prompts.830
Video Generation. Following prior works [13, 28, 44],831
we use a standard split of 700 scenes for training and 150832
scenes for validation. Each sequence is recorded at 12 Hz833
and lasts approximately 20 seconds, with annotations pro-834
vided at 2 Hz. To train higher-frequency models, we inter-835
polate the sequences to generate 12 Hz annotations and train836
models with both 2 Hz and 12 Hz versions. To achieve fine-837
grained control over the generated scenes and traffic actors’838
appearance, we utilize GPT-4v to generate detailed scene839
captions and object captions. These captions provide high-840
level semantic descriptions of the overall scene and detailed841
attributes for each traffic actor, enabling precise guidance842
during video generation. Additionally, we track each fore-843
ground actor within a single sequence to assign a unique844
ID, ensuring appearance consistency across frames in the845
generated video sequence.846
Open-loop and Closed-loop Settings. We support847
two map environments, singapore-onenorth and boston-848
seaport, both aligned with the DriveArena platform. A total849
of 100 simulation sequences are defined as the validation850
set to evaluate both open-loop and closed-loop generation851
performance.852

6.2. Evaluation Metrics853

Frechet Video Distance (FVD). This metric evaluates the854
visual quality and temporal consistency of generated video855
clips, following prior methods [13, 45].856
Mean Average Precision (mAP) and NuScenes Detection857
Score (NDS). We adopt mAP and NDS to assess the detec-858
tion accuracy on generated data to validate the fidelity.859

We utilize metrics from [8, 50] for comprehensive eval-860
uation in both open-loop and closed-loop setups: Pro-861
gressive Driving Metric Suite (PDMS): Initially proposed862
by NavSim, PDMS evaluates trajectory outputs at each863

timestep based on the following criteria: 864
No Collisions (NC): Measures whether the agent avoids 865

collisions with road users. Drivable Area Compliance 866
(DAC): Assesses whether the agent remains within the driv- 867
able area. Ego Progress (EP): Quantifies how effectively 868
the agent progresses along its intended route. Time-to- 869
Collision (TTC): Evaluates the safety of the trajectory in 870
terms of time remaining before a collision occurs. Com- 871
fort (C): Ensures the smoothness of the driving trajectory, 872
minimizing abrupt accelerations or turns. Arena Driving 873
Score (ADS): ADS integrates trajectory-level performance 874
(PDMS) with route completion to provide a holistic metric. 875
The Route Completion (Rc) is defined as the percentage of 876
the total route distance completed by the agent, where [ 877
0 , 1 ] Rc[0,1]. ADS is particularly suited for closed-loop 878
evaluation, as it considers both safety and consistency. For 879
instance, collisions or deviations from the road terminate 880
the simulation, making ADS an effective differentiator of 881
agent performance. 882

6.3. Model Details 883

OccDreamer. For the scene tokenizer Focc
VAE, we follow- 884

ing [41, 57] and train a 3D occupancy VAE, which takes 885
the occupancy data with the size of 192 × 192 × 16. Focc

VAE 886
compresses the data Sk to a latent space ZSk with a dimen- 887
sion of 48 × 48 × 4 and the channel is set to 8. For the 888
BEV map, a pre-trained encoder [16, 17] encodes the BEV 889
representation at the same resolution as the latent feature. 890

As for the denoiser ϵsθ and the ControlNet branch ϵsϕ, we 891
use 3D U-Net [16, 17] as the backbone for the 3D input 892
data. For the basic scene generation model, we train ϵsθ and 893
ϵsϕ for 60k iterations on 8 NVIDIA A800 GPUs. For the 894
scene extension version, we freeze ϵsθ and fine-tune ϵsϕ with 895
extra channels to take the partial scene as the condition. In 896
the inference stage, we adopt DDIM [16, 17] with 100 steps 897
sampling. Additionally, we set the classifier-free guidance 898
scale as 7 for the condition. 899
Videodreamer. Our implementation is based on the Open- 900
Sora codebase [59], initialized with pre-trained weights. 901
The training process is carried out on 8 NVIDIA A800 902
GPUs, comprising 30k iterations. As for the 4D occupancy 903
encoder F4Docc

VAE , we also borrow the network architecture 904
from [41, 57]. F4Docc

VAE takes 4D occupancy data as the in- 905
put and extract the embedding. The number of DiT blocks 906
is set to 26 and N = 13. For inference, we utilize recti- 907
fied flow [59] with a classifier-free guidance scale of 7.0, 908
performing 30 sampling steps to generate videos at vari- 909
ous resolutions from 480p to 1080p. For the open-loop and 910
closed-loop evaluation, we generate the video of 4 frames 911
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Methods Downsampling Scale IoU(↑) mIoU(↑)
OccWorld [57] H/4×W/4× T 62.29 66.38
OccSora [41] H/8×W/8× T/8 27.4 37

DrivingSphere4D H/4×W/4× T 93.1 73.89
Semcity [22] - 95.8 76.9

DrivingSphere3D H/4×W/4 97.2 86.81
Table 5. Quantitative results of Occupancy Tokenizer for Oc-
cupancy Reconstruction. DrivingSphere4D indicates F4Docc

VAE in
Sec. 3.2 while DrivingSphere4D indicates Focc

VAE in Sec. 3.1.

with f = 3 frames as the condition while generating long912
videos, we generate the 16 frames video sequence and gen-913
erally use f = 4 frames as the condition.914

7. Additional Quantitative Results915

7.1. Scene Reconstruction916

To validate the effectiveness of our Occupancy VAE, we917
conduct scene reconstruction experiments on the nuScenes918
validation set. These experiments evaluate both 3D and 4D919
scene reconstruction, providing a comprehensive analysis920
of the model’s capability. As shown in Tab. 5, for 3D scene921
reconstruction, we compare our trained 3D Occupancy VAE922
with SemCity, which is utilized as the occupancy tokenizer923
in Section 3.1. The results demonstrate that our Occupancy924
VAE achieves superior performance, highlighting its ability925
to encode and reconstruct 3D occupancy data effectively.926
For 4D scene reconstruction, we benchmark against Oc-927
cWorld and OccSora, widely regarded as state-of-the-art928
methods for large-scale 4D occupancy generation. The re-929
sults clearly show that our Occupancy VAE outperforms930
these approaches across all evaluation metrics, establish-931
ing new benchmarks for 4D scene reconstruction quality.932
These significant improvements are primarily attributed to933
the carefully designed network architecture, including the934
Projection Module and Expansion & Squeeze Strategy, as935
well as meticulously tuned experimental parameters. Such936
architectural innovations enable the model to capture fine-937
grained spatial and temporal information, ensuring accurate938
and efficient reconstruction of both static and dynamic ele-939
ments within the scenes. This experiment underscores the940
robustness and effectiveness of the proposed framework in941
handling complex 3D and 4D scene representations.942

7.2. Video Generation943

To further validate the capabilities of VideoDreamer, we944
align our experimental settings with state-of-the-art video945
generation methods, ensuring a fair comparison. As pre-946
sented in Tab. 6, we employ BEVFusion as the detector to947
quantitatively evaluate the visual fidelity of the generated948
videos. The results demonstrate that our method achieves949
superior performance, highlighting its ability to generate950

Methods FVD mAP(↑) NDS(↑)
RealData [3] - 62.29 66.38

MagicDrive [13] - 12.30 23.32
DriveDreamer [43] 340.8 - -

Panacea [45] 139 11.58 22.31
Drive-WM [44] 122.7 20.66 -

DrivingSphere w/o W 121.4 17.34 26.21
DrivingSphere 103.4 22.71 31.79

Table 6. Comparison of SOTA video generation methods on
nuScenes validation set. We use BEVFusion as the 3D detector.
’w/o W ’ indicates that the model uses no occupancy but uses the
2D sketch as the condition.

high-quality and visually coherent driving scenarios. Ad- 951
ditionally, we conduct an ablation study by introducing the 952
configuration ”w/o W”, which uses only 2D sketches as 953
conditions without incorporating occupancy data. This ab- 954
lation effectively isolates the contribution of the 4D driving 955
world to the video generation process. The results clearly il- 956
lustrate the significant improvement in visual fidelity when 957
occupancy data is integrated, confirming the critical role 958
of the occupancy condition in enhancing the realism and 959
consistency of generated video sequences. This experiment 960
underscores the robustness of our framework in producing 961
visually accurate driving videos and its ability to leverage 962
multi-modal conditions effectively. 963

8. Additional Visualtion Results 964

In this section, we provide more quality visualization re- 965
sults and a video is also attached in the materials for better 966
visualization of temporal results. 967

8.1. Scene Generation 968

In Fig. 7, we present a comparison between the occupancy 969
scenes generated by our method, SemCity, and real-world 970
data. The visual results clearly demonstrate that our method 971
achieves significantly higher fidelity compared to SemCity, 972
closely approximating the structural and semantic layout of 973
real-world data. It is important to note that SemCity is an 974
unconditional generation method, and as such, its outputs 975
are unpaired with the real data used for comparison. In 976
contrast, our method leverages conditions, ensuring consis- 977
tency with the road structures and semantic layouts of the 978
real data. This alignment highlights the strength of our ap- 979
proach in generating occupancy scenes that are not only vi- 980
sually realistic but also semantically coherent, demonstrat- 981
ing its suitability for tasks requiring precise scene under- 982
standing and reconstruction. 983

8.2. Video Generation 984

Controllable Video Generation In Fig. 11, we showcase 985
the results of video generation spanning 40 frames. The 986
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SemCity Ours Real Data

Figure 7. Comparison between Semcity [22], DrivingSphere and Real Data.

Figure 8. Composited Driving World in a specific area. We adpot Scene Generation and Scene Extention in Sec. 3.1 to obtain a big static
background.
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Figure 9. Generated Video sequnences in nuScene. Top: Occupancy condition, Middle: Our generated video, Bottom: Ground truth
video sequence.

generated sequences demonstrate the effectiveness of our987
method in accurately modeling not only the occlusions and988
depth relationships of foreground objects but also in pre-989

cisely controlling the generation of non-direct traffic partic- 990
ipants, such as trees, buildings, and man-made landmarks. 991

Our approach leverages the accurate control provided by 992

4



CVPR
#6336

CVPR
#6336

CVPR 2024 Submission #6336. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 10. Controllable Generation with scene captions. The visual reuslts vary with the give scene description.

occupancy data, enabling consistent and realistic represen-993
tation of both dynamic and static elements within the scene.994
This capability highlights the robustness of our model in995
generating complex and coherent driving environments over996
extended temporal horizons, making it well-suited for real-997
world applications that require high fidelity and detailed998
scene understanding.999

Simulation Results1000
Long-term Video Generation We also provide a demo1001

of ultra-long video generation on private data (refer to the1002
attached video). The demo showcases a video generated at1003
10 Hz over a duration of 1 minute, resulting in an impressive1004
600 frames of continuous generation.1005

9. Limitations and Future Work1006

Optimizing the computational pipeline for generating and1007
rendering 4D occupancy and video data will be a key fo-1008
cus. Techniques such as model pruning, quantization, and1009
adaptive sampling will be explored to reduce computational1010
overhead without compromising fidelity. Additionally, en-1011
abling real-time rendering capabilities will make the system1012
more practical for online validation.1013

Expanding the diversity of simulated environments is1014
critical for robustness testing. Future work will aim to1015
model a broader range of conditions, including extreme1016
weather (e.g., heavy rain, snow, and fog), varying road1017
geometries, and rare traffic scenarios. This enhancement1018
will allow the simulation to evaluate autonomous driving1019
systems under more comprehensive and challenging condi-1020
tions.1021
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DriveArena Ours

Figure 11. Comparison with DriveArena [50]. The visual output of DriveArena and DrivingSphere on the same route demonstrates
superior temporal and spatial consistency in generated simulations.
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